One-Pot Lipase-Catalyzed Enantioselective Synthesis of (R)-(−)-N-Benzyl-3-(benzylamino)butanamide: The Effect of Solvent Polarity on Enantioselectivity

2017 
The use of the solvent engineering has been applied for controlling the resolution of lipase-catalyzed synthesis of β-aminoacids via Michael addition reactions. The strategy consisted of the thermodynamic control of products at equilibrium using the lipase CalB as a catalyst. The enzymatic chemo- and enantioselective synthesis of (R)-(−)-N-benzyl-3-(benzylamino)butanamide is reported, showing the influence of the solvent on the chemoselectivity of the aza-Michael addition and the subsequent kinetic resolution of the Michael adduct; both processes are catalyzed by CalB and both are influenced by the nature of the solvent medium. This approach allowed us to propose a novel one-pot strategy for the enzymatic synthesis of enantiomerically enriched β-aminoesters and β-aminoacids.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    5
    Citations
    NaN
    KQI
    []