Mycophenolic acid interferes the transcriptional regulation and protein trafficking of maturation surface markers in dendritic cells.

2021 
Abstract Background The ability of dendritic cells (DCs) to regulate adaptive immunity makes them interesting cells to be used as therapeutic targets modulating alloimmune responses. Mycophenolic acid (MPA) is an immunosuppressor commonly used in transplantation, and its effect on DCs has not been fully investigated. Methods Monocyte-derived DCs were obtained from healthy volunteers and cultured for 7 days. Cells were treated with MPA on day 2 and matured by lipopolysaccharide (LPS) stimulation. Functionality of mature DC (mDCs) was evaluated by allogeneic mixed lymphocytes reaction. Surface expression of maturation markers (CD40, CD83, CD86, and ICAM-1) was analyzed in both immature DCs (iDCs) and mDCs by flow cytometry. To assess transcriptional regulation and protein subcellular location, RT-PCR and confocal microscopy were used, respectively. Results MPA decreased surface expression of all maturation markers in mDCs and significantly abrogated DCs-induced allogeneic T-cell proliferation after MPA pre-treatment. In iDCs, the reduced surface protein expression after MPA paralleled with mRNA downregulation of their genes. In mDCs, the mRNA levels of ICAM-1, CD40 and CD83 were enhanced in MPA-treated mDCs with an increase in the expression of CD83 and ICAM-1 near the Golgi compared to non-treated mDCs. In contrast, mRNA levels of CD86 were diminished after MPA treatment. Conclusions The reduced surface markers expression in mDCs exerted by MPA produced a decline in their capacity to activate immune responses. Moreover, the inhibition of guanosine-derived nucleotide biosynthesis by MPA treatment leads to DC maturation interference by two mechanisms depending on the marker, transcriptional downregulation or disrupted intracellular protein trafficking.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    0
    Citations
    NaN
    KQI
    []