Impact of scaling errors of the thigh and shank segments on musculoskeletal simulation results

2021 
Abstract Background Musculoskeletal simulations are widely used in the research community. The locations of surface markers are mostly used to scale a generic model to the participant’s anthropometry. Marker-based scaling approaches include errors due to inaccuracies in marker placements. Research question How do scaling errors of the thigh and shank segments influence simulation results? Methods Motion capture data and magnetic resonance images from a child with cerebral palsy and a typically developing child were used to create a subject-specific reference model for each child. These reference models were modified to mimic scaling errors due to inaccurately placed lateral epicondyle markers, which are frequently used to scale the thigh and shank segments. The thigh length was altered in 1 % steps from the original length and the shank length was accordingly adjusted to keep the total leg length constant. Thirty additional models were created, which included models with an altered thigh length of ±15 %. Subsequently, musculoskeletal simulations with OpenSim were performed with all models. Joint kinematics, joint kinetics, muscle forces and joint contact forces (JCF) were compared between the reference and altered models. Results The investigated scaling error influenced joint kinematics and joint kinetics by up to 9.4° (hip flexion angle) and 0.15 Nm/kg (knee flexion moment), respectively. Maximum muscle and JCF differences of 46 % (medial gastrocnemius) and 72 % (hip JCF) bodyweight, respectively, were observed between the reference and altered models. Scaling errors mainly changed the magnitude but not the shape of most analyzed parameters. The influence of scaling errors on simulation results were similar in both participants. Significance Scaling errors of the thigh segment influence simulation results at all joints due to the global optimization approach used in musculoskeletal simulations. Our findings can be used to estimate potential errors due to marker-based scaling approaches in previous and future studies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    6
    Citations
    NaN
    KQI
    []