A large modulation of electron-phonon coupling and an emergent superconducting dome in doped strong ferroelectrics

2021 
We use first-principles methods to study doped strong ferroelectrics (taking BaTiO3 as a prototype). Here, we find a strong coupling between itinerant electrons and soft polar phonons in doped BaTiO3, contrary to Anderson/Blount’s weakly coupled electron mechanism for "ferroelectric-like metals”. As a consequence, across a polar-to-centrosymmetric phase transition in doped BaTiO3, the total electron-phonon coupling is increased to about 0.6 around the critical concentration, which is sufficient to induce phonon-mediated superconductivity of about 2 K. Lowering the crystal symmetry of doped BaTiO3 by imposing epitaxial strain can further increase the superconducting temperature via a sizable coupling between itinerant electrons and acoustic phonons. Our work demonstrates a viable approach to modulating electron-phonon coupling and inducing phonon-mediated superconductivity in doped strong ferroelectrics and potentially in polar metals. Our results also show that the weakly coupled electron mechanism for "ferroelectric-like metals” is not necessarily present in doped strong ferroelectrics. Usually the coupling between polar phonons and itinerant electrons is weak in polar metals. Here, the authors show that in doped ferroelectrics (approximate polar metals), this coupling can be increased across the structural phase transition and as a result, phonon-mediated superconductivity emerges.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []