Small-scale lobate hillslope features on Mars: A comparative 3D morphological study with terrestrial solifluction lobes and zebra stripe lobes

2019 
Abstract Small-scale lobes (SSL) observed at the surface of Mars are thought to be the result of solifluction. Hence, their existence has important implications for our understanding of recent climate history, the distribution of thaw liquids and its geomorphic effects, as water is believed not to have been recently stable at the martian surface. These small-scale lobes are limited to sloping terrains and often occur alongside polygonal patterned ground attesting to the presence of ice in the environment. In this study, we perform a comparative 3D morphometric analysis of the lobes on Mars with terrestrial analogues. We use data from High Resolution Imaging Science Experiment (HiRISE) camera in order to create Digital Terrain Models (DTMs) on Mars at 1 m/pix. For the terrestrial analogues, we use DTMs and orthophotos from five periglacial environments with solifluction lobes and from one site with lobate features found in the Atacama Desert. The lobate features in the Atacama Desert are found within features called “zebra stripes”, which are apparently unique to the Atacama and are now generally accepted to be the result of seismic shaking. We show that SSL on Mars overlap morphometrically with terrestrial solifluction lobes, and are less similar to zebra stripe lobes. The majority of martian SSL occur below the angle of repose which demonstrates that a dry fall mechanism cannot be responsible for their formation and that lubrication of the subsurface is required. We found that martian SSL only occur on slopes greater than ~10°, a constraint not observed for terrestrial solifluction lobes nor zebra stripe lobes in Atacama. We hypothesise that this apparent constraint does not result from the lowered gravity on Mars, but instead from differing soil properties and/or thermal regime between Mars and Earth which affects the slope at which creep can initiate. We cannot rule out a role of CO2 sublimation in lobe-formation based on our terrestrial measurements.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    84
    References
    2
    Citations
    NaN
    KQI
    []