Superconductivity in a Hole-Doped Mott-Insulating Triangular Adatom Layer on a Silicon Surface.

2020 
Adsorption of one-third monolayer of Sn on an atomically clean Si(111) substrate produces a two-dimensional triangular adatom lattice with one unpaired electron per site. This dilute adatom reconstruction is an antiferromagnetic Mott insulator; however, the system can be modulation doped and metallized using heavily doped p-type Si(111) substrates. Here, we show that the hole-doped dilute adatom layer on a degenerately doped p-type Si(111) wafer is superconducting with a critical temperature of 4.7±0.3  K. While a phonon-mediated coupling scenario would be consistent with the observed T_{c}, Mott correlations in the Sn-derived dangling-bond surface state could suppress the s-wave pairing channel. The latter suggests that the superconductivity in this triangular adatom lattice may be unconventional.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    0
    Citations
    NaN
    KQI
    []