Outstanding surface plasmon resonance performance enabled by templated oxide gratings

2016 
Here we report a simple and scalable soft-lithography-based templating technology for fabricating Au-covered oxide (titania and zirconia) gratings by using DVDs as a structural template. The resulting plasmonic gratings simultaneously exhibit very high surface plasmon resonance (SPR) sensitivity (up to ∼940 nm per refractive index unit, nm per RIU) and figure of merit (FOM, up to 62.5). The effects of thermal annealing of the templated oxide gratings on their final plasmonic properties have been systematically investigated by both experiments and finite-difference time-domain (FDTD) simulations. Higher SPR sensitivities and slightly reduced FOMs have been observed for the annealed gratings. Additionally, the amplitude of the SPR dips gradually decreases with increasing annealing temperatures. Scanning electron microscopy and X-ray diffraction show that the annealing process enlarges the crystal domain sizes of the oxides and smoothens the final plasmonic grating surface. Systematic FDTD simulations reveal that the SPR properties (e.g., dip amplitude) of Au-covered oxide gratings are significantly affected by the deformation of the track-pitch structure caused by thermal annealing, agreeing with the experimental results. The outstanding SPR performance combined with the high thermal stability of the crystalline oxides could make the templated plasmonic gratings a promising SPR platform for many important sensing applications, such as in situ probing heterogeneous catalytic reactions under realistic conditions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    18
    Citations
    NaN
    KQI
    []