Demonstration of Low Emittance in the Cornell Energy Recovery Linac Injector Prototype

2013 
We present a detailed study of the six-dimensional phase space of the electron beam produced by the Cornell Energy Recovery Linac Photoinjector, a high-brightness, high repetition rate (1.3 GHz) DC photoemission source designed to drive a hard x-ray energy recovery linac (ERL). A complete simulation model of the injector has been constructed, verified by measurement, and optimized. Both the horizontal and vertical 2D transverse phase spaces, as well as the time-resolved (sliced) horizontal phase space, were simulated and directly measured at the end of the injector for 19 pC and 77 pC bunches at roughly 8 MeV. These bunch charges were chosen because they correspond to 25 mA and 100 mA average current if operating at the full 1.3 GHz repetition rate. The resulting 90% normalized transverse emittances for 19 (77) pC/bunch were 0.23 +/- 0.02 (0.51 +/- 0.04) microns in the horizontal plane, and 0.14 +/- 0.01 (0.29 +/- 0.02) microns in the vertical plane, respectively. These emittances were measured with a corresponding bunch length of 2.1 +/- 0.1 (3.0 +/- 0.2) ps, respectively. In each case the rms momentum spread was determined to be on the order of 1e-3. Excellent overall agreement between measurement and simulation has been demonstrated. Using the emittances and bunch length measured at 19 pC/bunch, we estimate the electron beam quality in a 1.3 GHz, 5 GeV hard x-ray ERL to be at least a factor of 20 times better than that of existing storage rings when the rms energy spread of each device is considered. These results represent a milestone for the field of high-brightness, high-current photoinjectors.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []