Chest conduction properties and ECG equalization.

2000 
: In common practice of detecting and recording biomedical signals, it is often implicitly assumed that the propagation, through the whole circuit human body-electrodes recording devices, is frequency and voltage independent. As a consequence, clinicians are not aware that recorded signals do not correspond faithfully to the original electrical activity of organs under investigation. We have studied the transmission of electrical signals in human body at various voltages and frequencies to understand if and to which extent the most diffused stimulating and recording techniques used in medicine are affected by global body conduction properties. Our results show that, in order to obtain a more faithful detection of electrical activity produced or evoked by human organs (e.g. EGG, electromyography, etc.), it is convenient to 'equalize'' recorded signals. To this purpose, two equalization techniques are proposed, based, respectively, on a simple hardware filtering during acquisition, or FFT post-processing of the acquired signals. As an application, we have studied the transmission of electrical signal in human chest and have compared equalized high frequency ECG signals with raw (original) recordings.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []