Ontogeny changes and weaning effects in gene expression patterns of digestive enzymes and regulatory digestive factors in spotted rose snapper (Lutjanus guttatus) larvae.

2016 
The study of digestive physiology is an important issue in species that have been introduced in aquaculture like the spotted rose snapper (Lutjanus guttatus). The aims of this study were to describe the expression of digestive enzymes (trypsinogen, chymotrypsinogen, α-amylase, lipoprotein lipase, phospholipase A and pepsinogen) and their relation with orexigenic (neuropeptide Y, NPY) and anorexigenic (cholecystokinin, CCK) factors during the larval development and to evaluate the effect of weaning in their expression. The results showed that the transcripts of all the assayed digestive enzymes, with the exception of pepsinogen, and NPY and CCK were already present in L. guttatus from the hatching stage. The expression of all the enzymes was low during the yolk-sac stage (0–2 days after hatching, DAH), whereas after the onset of exogenous feeding at 2 DAH, their expression increased and fluctuated throughout larval development, which followed a similar pattern as in other marine fish species and reflected changes in different types of food items and the progressive maturation of the digestive system. On the other hand, weaning of L. guttatus larvae from live prey onto a microdiet between 25 and 35 DAH significantly affected the relative expression of most pancreatic digestive enzymes during the first weaning days, whereas chymotrypsinogen 2 and lipoprotein lipase remained stable during this period. At the end of co-feeding, larvae showed similar levels of gene expression regardless of the diet (live prey vs. microdiet), which indicated that larvae of L. guttatus were able to adapt their digestive capacities to the microdiet. In contrast, feeding L. guttatus larvae with live feed or microdiet did not affect the expression of CCK and NPY. The relevance of these findings with regard to current larval rearing procedures of L. guttatus is discussed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    70
    References
    19
    Citations
    NaN
    KQI
    []