Mouse patatin-like phospholipase domain-containing 3 influences systemic lipid and glucose homeostasis†‡

2011 
Human patatin-like phospholipase domain-containing 3 (PNPLA3) is associated with increased liver fat content and liver injury. Here, we show that nutritional status regulates PNPLA3 gene expression in the mouse liver. Sterol response element binding protein-1 (SREBP-1) activated PNPLA3 gene transcription via sterol regulatory elements (SREs) mapped to the promoter region. Chromatin immunoprecipitation and electrophoretic mobility shift assays confirmed that SREBP-1 proteins bound to the identified SREs. Furthermore, SREBP-1c mediated the insulin and liver X receptor agonist TO901317-dependent induction of PNPLA3 gene expression in hepatocytes. Adenovirus-mediated overexpression of mouse PNPLA3 increased intracellular triglyceride content in primary hepatocytes, and knockdown of PNPLA3 suppressed the ability of SREBP-1c to stimulate lipid accumulation in hepatocytes. Finally, the overexpression of PNPLA3 in mouse liver increased the serum triglyceride level and impaired glucose tolerance; in contrast, the knockdown of PNPLA3 in db/db mouse liver improved glucose tolerance. Conclusion: Our data suggest that mouse PNPLA3, which is a lipogenic gene directly targeted by SREBP-1, promotes lipogenesis in primary hepatocytes and influences systemic lipid and glucose metabolism. (HEPATOLOGY 2011;)
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    58
    Citations
    NaN
    KQI
    []