Hybrid EGR and turbocharging systems control for low NOX and fuel consumption in an automotive diesel engine

2016 
An experimental investigation was made on a downsized Euro 5 turbocharged diesel engine managing high/low pressure EGR systems and the variable nozzle turbine, aiming at major reductions in NOX emissions while enhancing fuel consumption in comparison with reference configuration. Three part load engine operating conditions were chosen at low and medium speed levels, applying different strategies to a number of control variables (relative air–fuel ratio, VNT opening degree/intake pressure, valves position in low pressure EGR circuit), thus exploring the whole range of high/low pressure EGR proportion. In suitable operating modes of tested conditions, NOX emissions were reduced up to 58–66%. Brake specific fuel consumption decreased around 5–9.5% at low speed/load, 1.7–3.3% in the intermediate condition while no advantages were achieved in the third working point. The activation of low pressure loop confirmed to be beneficial for turbocharger performance, rising its rotational speed thus granting for a better transient response, while increase in soot emissions ranged in a wide interval. For each condition, optimal operating modes were identified, with the relevant EGR proportion. A prevailing contribution from the long route circuit was generally requested, up to the exclusion of short route loop at higher level of speed and load.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    42
    Citations
    NaN
    KQI
    []