A toolchain for delta-oriented modeling of software product lines

2016 
Software is increasingly individualized to the needs of customers and may have to be adapted to changing contexts and environments after deployment. Therefore, individualized software adaptations may have to be performed. As a large number of variants for affected systems and domains may exist, the creation and deployment of the individualized software should be performed automatically based on the software’s configuration and context. In this paper, we present a toolchain to develop and deploy individualized software adaptations based on Software Product Line (SPL) engineering. In particular, we contribute a description and technical realization of a toolchain ranging from variability modeling over variability realization to variant derivation for the automated deployment of individualized software adaptations. To capture the variability within realization artifacts, we employ delta modeling, a transformational SPL implementation approach. As we aim to fulfill requirements of industrial practice, we employ model-driven engineering using statecharts as realization artifacts. Particular statechart variants are further processed by generating C/C++ code, linking to external code artifacts, compiling and deploying to the target device. To allow for flexible and parallel execution the toolchain is provided within a cloud environment. This way, required variants can automatically be created and deployed to target devices. We show the feasibility of our toolchain by developing the industry-related case of emergency response systems.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    11
    Citations
    NaN
    KQI
    []