A new hybrid multilevel converter for DFIG-based wind turbines fault ride-through and transient stability enhancement

2020 
The increasing participation of wind turbines based on doubly fed induction generator (DFIG) in the power system around the world is motivating the investigation of novel strategies to enhance the reliability of DFIG and power system connection. This paper proposes the use of a new hybrid multilevel back-to-back converter on DFIG wind turbine to improve its fault ride-through capability and power system transient stability. The proposed topology is built adding single-phase full-bridge inverters in series with each phase of traditional three-phase inverter. This converter is able to generate higher voltages in rotor circuit whenever it is required, which can effectively protect power converter and at the same time contribute with grid transient performance. Simulation results, using PSCAD®, are presented for a 2 MW DFIG machine submitted to symmetrical faults in single machine—infinite bus and three-bus system. Results show that the proposal is effective as a protection and works well as an alternative to traditional solutions, limiting currents and maintaining power control during voltage dips. It is also effective in contribution with the improvement of transient stability margin by the possibility of reactive power injection.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    3
    Citations
    NaN
    KQI
    []