Solution structure of the cytoplasmic domain of NhaP2 a K+/H+ antiporter from Vibrio cholera

2020 
NhaP2 is a K(+)/H(+) antiporter from Vibrio cholerae which consists of a transmembrane domain and a cytoplasmic domain of approximately 200 amino acids, both of which are required for cholera infectivity. Here we present the solution structure for a 165 amino acid minimal cytoplasmic domain (P2MIN) form of the protein. The structure reveals a compact N-terminal domain which resembles a Regulator of Conductance of K(+) channels (RCK) domain connected to a more open C-terminal domain via a flexible 20 amino acid linker. NMR titration experiments showed that the protein binds ATP through its N-terminal domain, which was further supported by waterLOGSY and Saturation Transfer Difference NMR experiments. The two-domain organisation of the protein was confirmed by BIOSAXS, which also revealed that there are no detectable-ATP-induced conformational changes in the protein structure. Finally, in contrast to all known RCK domain structures solved to date, the current work shows that the protein is a monomer.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    73
    References
    1
    Citations
    NaN
    KQI
    []