Broad-band polarization-insensitive all-dielectric metalens enabled by intentional off-resonance waveguiding at mid-wave infrared

2019 
Metasurfaces are promising candidates to take the place of conventional optical components as they enable wavefront engineering at sub- and near-wavelength distances along both lateral and vertical directions. Plasmonic metasurfaces containing sub-wavelength metallic structures constitute initial examples of this concept. However, plasmonic metasurfaces cannot achieve satisfactory efficiencies in the transmission mode due to their intrinsic losses. The low efficiencies of transmissive plasmonic metasurfaces motivated solutions using dielectric ones. Such high-efficiency all dielectric metasurfaces depend on either resonance tuning or Pancharatnam–Berry (geometrical) phase approaches. However, these approaches are limited to either narrow operation bands or suffer polarization dependency. Here, we propose and show high-index dielectric nanopillars operated as cylindrical waveguides deliberately in the off-resonance regime to achieve polarization independent wavefront control over wide spectral bands. As a ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    16
    Citations
    NaN
    KQI
    []