Odour-tracking capability of a silkmoth driving a mobile robot with turning bias and time delay

2013 
The reconstruction of mechanisms behind odour-tracking behaviours of animals is expected to enable the development of biomimetic robots capable of adaptive behaviour and effectively locating odour sources. However, because the behavioural mechanisms of animals have not been extensively studied, their behavioural capabilities cannot be verified. In this study, we have employed a mobile robot driven by a genuine insect (insect-controlled robot) to evaluate the behavioural capabilities of a biological system implemented in an artificial system. We used a male silkmoth as the ‘driver’ and investigated its behavioural capabilities to imposed perturbations during odour tracking. When we manipulated the robot to induce the turning bias, it located the odour source by compensatory turning of the on-board moth. Shifting of the orientation paths to the odour plume boundaries and decreased orientation ability caused by covering the visual field suggested that the moth steered with bilateral olfaction and vision to overcome the bias. An evaluation of the time delays of the moth and robot movements suggested an acceptable range for sensory-motor processing when the insect system was directly applied to artificial systems. Further evaluations of the insect-controlled robot will provide a ‘blueprint’ for biomimetic robots and strongly promote the field of biomimetics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    38
    Citations
    NaN
    KQI
    []