Sliding-Mode Control for a Three-Phase Unity Power Factor Rectifier Operating at Fixed Switching Frequency

2016 
This paper presents an improved variable hysteresis-band current-control in natural frame for a three-phase unity power rectifier. The proposed control algorithm is based on three decoupled sliding-mode controllers combined with three independent Kalman filters. The use of Kalman filters instead of a nonadaptive state observer improves the quality of the estimated signals in presence of noise, increasing the immunity of the control loop in noisy environments. To reduce drastically the computational load in the Kalman algorithm, a reduced bilinear model is derived which allows to use a Kalman filter algorithm instead of an extended Kalman filter. A fast output-voltage control is also presented which avoids output-voltage variations when a sudden change in the load or a voltage sag appears. Moreover, a fixed switching frequency algorithm is proposed which uses a variable hysteresis-band in combination with a switching decision algorithm, ensuring a switching spectrum concentrated around the desired switching frequency. The overall control proposal has been fully integrated into a digital signal processor. Selected experimental results are introduced to validate the theoretical contributions of this paper.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    55
    Citations
    NaN
    KQI
    []