Global regulator engineering enhances bioelectricity generation in Pseudomonas aeruginosa-inoculated MFCs

2020 
Abstract The electricigens with high-electroactivity is essential for resolving the low electricity power output (EPT) of microbial fuel cells (MFCs). However, the manipulation by single functional genes shows limitation because electroactivity is a complex phenotype controlled by multiple genes. Herein, global regulator engineering (GRE) was developed to optimize the electroactivity of an isolated strain (Pseudomonas aeruginosa P3-A-11) using an exogenous global regulator IrrE (ionizing radiation resistance E linkage group) as an object. The GRE was implemented through in vitro random mutagenesis by error-prone PCR and in vivo high-through screening comprised of cultures color assay, PYO measurement and MFCs operation. Four mutants with higher electroactivity were obtained, among which, the mutant 11/M2-59 not only displayed the maximal power density, but also exhibited stronger salt tolerance, consequently showing good performance of MFCs in the presence of salt. Apart from the reduced internal resistance, the increase in phenazines amounts primarily contributed to EPT improvement, which was realized by enhancing the core biosynthesis pathway and affecting other pathways (such as central metabolism pathway, quorum sensing system, regulatory network). Notably, IrrE exerted its positive effect on electroactivity even without native regulators (such as PmpR and RpoS). In addition, the significant fluctuations in expression levels of stress-responsive genes mediated by GRE were closely associated with the enhanced salt tolerance. This work demonstrated that GRE was an effective approach for simultaneously optimizing multiple phenotypes (such as electroactivity and stress tolerance), and thus would provide more opportunities to create high-efficiency electricigens and further promoted the practical application of MFCs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    3
    Citations
    NaN
    KQI
    []