The properties of the kinematically distinct components in NGC 448 and NGC 4365

2019 
Aims. We study the kinematically distinct components in two early-type galaxies NGC 448 and NGC 4365 aided by integral-field observations with the Multi Unit Spectroscopic Explorer (MUSE) on the Very Large Telescope. We aim to measure the brightness profiles, kinematics, and stellar population properties of the peculiar kinematic structures in these galaxies and shed light on their true nature and formation mechanism. Methods. We use a kinematic decomposition technique to separate the individual contributions to the spectra of the two distinct kinematic components observed at each spatial position in the field of view. By folding back the outcome of a photometric decomposition we reduce the intrinsic degeneracies in recovering the kinematics and the best-fitting stellar spectral templates. Finally, by extracting the Lick line-strength indices for the individual components and fitting them to single stellar population models we derive their ages, metallicities, and {\alpha}/Fe overabundances. Results. The two kinematically decoupled stellar components in NGC 448 have similar ages, but different chemical compositions. The distinct kinematic feature in NGC 448 has a nearly exponential surface-brightness light profile, dominates in the innermost ~ 10", is smaller in size, and is very likely an embedded counter-rotating disk as also indicated by its kinematics. It has higher metallicity than the main galaxy stellar body and lower {\alpha}/Fe overabundance. By contrast, we do not find evidence for true decoupling in the two distinct kinematic components in NGC 4365. This confirms earlier work suggesting that the kinematically distinct core is likely not a separate dynamical structure, but most certainly likely a projection effect stemming from the orbital structure of this galaxy that was previously found to be intrinsically triaxial in shape.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    118
    References
    4
    Citations
    NaN
    KQI
    []