A new multi-tracer pellet injection for a simultaneous study of low- and mid/high-Z impurities in high-temperature plasmas.

2021 
A new multi-tracer technique in the Tracer-Encapsulated Solid Pellet (TESPEL) method has been developed in order to acquire simultaneously the information about the behaviors of various impurities, i.e., to study concurrently the behaviors of low- and mid/high-Z impurities in magnetically confined high-temperature plasmas. In this new technique, an inorganic compound (for example, lithium titanate, Li2TiO3) is proposed to be used as a tracer embedded in the core of the TESPEL, instead of pure elements. The results of the proof-of-principle experiment clearly demonstrate the applicability of the new multi-tracer technique in the TESPEL method for the simultaneous study of behaviors of low- and mid/high-Z impurities in high-temperature plasmas.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    0
    Citations
    NaN
    KQI
    []