Optical properties of biochemical compositions of microalgae within the spectral range from 300 to 1700 nm

2021 
The optical properties of biochemical compositions of microalgae are vital for the improvement of biosensor design, photobioreactor design, biofuel, and biophotonics techniques. A combination method using both the double optical pathlength transmission method (DOPTM) and the ellipsometry method (EM) is called DOPTM-EM, and it is used to acquire the optical constants of protein, lipid, and carbohydrate of Haematococcus pluvialis, Nannochloropsis sp., and Spirulina in both a solid state and a solution state within the visible and near-infrared spectral range. For different types of microalgae, the refractive indices of protein and carbohydrate in the solid state are similar to each other, but show an observed difference from lipid in the solid state. The refractive indices of protein and carbohydrate in the solution state presents a visible distinction in the researched spectral range. The absorption indices of protein, lipid, and carbohydrate in the solid state for these three types of microalgae are close to each other in the spectral range of 300–500 nm. However, an observed difference is shown in the spectral range of 500–1700 nm. For ease of application, the refractive index of biochemical composition of microalgae was fitted based on the Sellmeier equation. We believe this work can provide a reference to obtain the optical properties of biomaterial with high accuracy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    0
    Citations
    NaN
    KQI
    []