Homogenization method based on the inverse problem

2013 
We present a method for deriving homogeneous multi-group cross sections to replace a heterogeneous region's multi-group cross sections; providing that the fluxes and the currents on the external boundary, and the region averaged fluxes are preserved. The method is developed using diffusion approximation to the neutron transport equation in a symmetrical slab geometry. Assuming that the boundary fluxes are given, two response matrices (RMs) can be defined. The first derives the boundary current from the boundary flux, the second derives the flux integral over the region from the boundary flux. Assuming that these RMs are known, we present a formula which reconstructs the multi-group cross-section matrix and the diffusion coefficients from the RMs of a homogeneous slab. Applying this formula to the RMs of a slab with multiple homogeneous regions yields a homogenization method; which produce such homogenized multi-group cross sections and homogenized diffusion coefficients, that the fluxes and the currents on the external boundary, and the region averaged fluxes are preserved. The method is based on the determination of the eigenvalues and the eigenvectors of the RMs. We reproduce the four-group cross section matrix and the diffusion constants from the RMs in numerical examples. We give conditions for replacingmore » a heterogeneous region by a homogeneous one so that the boundary current and the region-averaged flux are preserved for a given boundary flux. (authors)« less
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []