Experimental self-testing of entangled states

2018 
Quantum entanglement is the key resource for quantum information processing. Device-independent certification of entangled states is a long standing open question, which arouses the concept of self-testing. The central aim of self-testing is to certify the state and measurements of quantum systems without any knowledge of their inner workings, even when the used devices cannot be trusted. Specifically, utilizing Bell's theorem, it is possible to place a boundary on the singlet fidelity of entangled qubits. Here, beyond this rough estimation, we experimentally demonstrate a complete self-testing process for various pure bipartite entangled states up to four dimensions, by simply inspecting the correlations of the measurement outcomes. We show that this self-testing process can certify the exact form of entangled states with fidelities higher than 99.9% for all the investigated scenarios, which indicates the superior completeness and robustness of this method. Our work promotes self-testing as a practical tool for developing quantum techniques.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    1
    Citations
    NaN
    KQI
    []