Infrared Echoes of Optical Tidal Disruption Events: ~1% Dust Covering Factor or Less at sub-parsec Scale.

2021 
The past decade has experienced an explosive increase of optically-discovered tidal disruption events (TDEs) with the advent of modern time-domain surveys. However, we still lack a comprehensive observational view of their infrared (IR) echoes in spite of individual detections. To this end, we have conducted a statistical study of IR variability of the 23 optical TDEs discovered between 2009 and 2018 utilizing the full public dataset of Wide-field Infrared Survey Explorer. The detection of variability is performed on the difference images, yielding out 11 objects with significant (>$3\sigma$) variability in at least one band while dust emission can be only fitted in 8 objects. Their peak dust luminosity is around $10^{41}$-$10^{42}$ erg/s, corresponding to a dust covering factor $f_c\sim0.01$ at scale of sub-parsec. The only exception is the disputed source ASASSN-15lh, which shows an ultra-high dust luminosity ($\sim10^{43.5}$ erg/s) and make its nature even elusive. Other non-detected objects show even lower $f_c$, which could be one more order of magnitude lower. The derived $f_c$ is generally much smaller than those of dusty tori in active galactic nuclei (AGNs), suggesting either a dearth of dust or a geometrically thin and flat disk in the vicinity of SMBHs. Our results also indicate that the optical TDE sample (post-starburst galaxies overrepresented) is seriously biased to events with little dust at sub-pc scale while TDEs in dusty star-forming systems could be more efficiently unveiled by IR echoes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    88
    References
    2
    Citations
    NaN
    KQI
    []