Method for Determination of Technical Noise Contributions to Ion Motional Heating.

2018 
Microfabricated Paul ion traps show tremendous promise for large-scale quantum information processing. However, motional heating of ions can have a detrimental effect on the fidelity of quantum logic operations in miniaturized, scalable designs. In many experiments, contributions to ion heating due to technical voltage noise present on the static (DC) and radio frequency (RF) electrodes can be overlooked. We present a reliable method for determining the extent to which motional heating is dominated by residual voltage noise on the DC or RF electrodes. Also, we demonstrate that stray DC electric fields can shift the ion position such that technical noise on the RF electrode can significantly contribute to the motional heating rate. After minimizing the pseudopotential gradient experienced by the ion induced by stray DC electric fields, the motional heating due to RF technical noise can be significantly reduced.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []