Looking for an insulin pill? Use the BRET methodology!

2003 
Summary Insulin exerts its biological effects through a plasma membrane receptor that possesses a tyrosine-kinase activity. This tyrosine-kinase activity depends on the autophosphorylation of the receptor on tyrosine residues and on its dephosphorylation by protein tyrosine-phosphatases. The discovery of pharmacological agents that specifically stimulate the autophosphorylation of the insulin receptor or inhibit its dephosphorylation will be of great importance for the treatment of insulin resistant or insulin deficient patients. Bioluminescence Resonance Energy Transfer (BRET) has developed in recent years as a new technique to study protein-protein interactions. In the BRET technique, one partner is fused to Renilla luciferase, whereas the other partner is fused to a fluorescent protein (e.g. YFP, Yellow Fluorescent Protein). The luciferase is excited by addition of its substrate, cœlenterazine. If the two partners interact, resonance energy transfer occurs between the luciferase and the YFP, and a fluorescent signal, emitted by the YFP, can be detected. Our work indicates that this methodology could be an important tool for the search of molecules that activate insulin receptor autophosphorylation or that inhibit its dephosphorylation. Indeed, we first showed that the activation of the insulin receptor by different ligands can be monitored using a chimeric receptor with one β-subunit fused to Renilla luciferase and the other β-subunit fused to YFP. The conformational changes induced by different ligands could be detected as an energy transfer (BRET signal) between the luciferase and the YFP, that reflects the activation state of the receptor. This methodology allows for rapid analysis of the effects of agonists on insulin receptor activity and may therefore be used in high-throughput screening for the discovery of molecules with insulin-like properties. More recently, we demonstrated that the BRET methodology could also be used to monitor the interaction of the insulin receptor with protein tyrosine-phosphatase 1B, one of the main tyrosine-phosphatase that controls its activity. HEK cells were co-transfected with the insulin receptor fused to Renilla luciferase and a substrate-trapping mutant of PTP1B (PTP1B-D181A) fused to YFP. Insulin-induced BRET signal could be followed in real time for more than 30 min. Therefore, this methodology can also be used in high-throughput screening for the search of molecules that will specifically disrupt the interaction between the insulin receptor and PTP1B.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    9
    Citations
    NaN
    KQI
    []