Drought Detection over Papua New Guinea Using Satellite-Derived Products

2020 
This study evaluates the World Meteorological Organization’s (WMO) Space-based Weather and Climate Extremes Monitoring (SWCEM) Demonstration Project precipitation products over Papua New Guinea (PNG). The products evaluated were based on remotely-sensed precipitation, vegetation health, soil moisture, and outgoing longwave radiation (OLR) data. The satellite precipitation estimates of the Climate Prediction Center/National Oceanic and Atmospheric Administration’s (CPC/NOAA) morphing technique (CMORPH) and Japan Aerospace Exploration Agency’s (JAXA) Global Satellite Mapping of Precipitation (GSMaP) were assessed on a monthly timescale over an 18-year period from 2001 to 2018. Station data along with the ERA5 reanalysis were used as the reference datasets for assessment purposes. In addition, a case study was performed to investigate how well the SWCEM precipitation products characterised drought in PNG associated with the 2015–2016 El Nino. Overall statistics from the validation study suggest that although there remains significant variability between satellite and ERA5 rainfall data in remote areas, this difference is much less at locations where rain gauges exist. The case study illustrated that the Vegetation Health Index (VHI), OLR anomaly and the Standardized Precipitation Index (SPI) were able to reliably capture the spatial and temporal aspects of the severe 2015–2016 El Nino-induced drought in PNG. Of the three, VHI appeared to be the most effective, in part due to its reduced incidence of false alarms. This study is novel as modern-day satellite-derived products have not been evaluated over PNG before. A focus on their value in monitoring drought can bring great value in mitigating the impact of future droughts. It is concluded that these satellite-derived precipitation products could be recommended for operational use for drought detection and monitoring in PNG, and that even a modest increase in ground-based observations will increase the accuracy of satellite-derived observations remotely.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    5
    Citations
    NaN
    KQI
    []