Dissection of the mechanisms of growth inhibition resulting from loss of the PII protein in the cyanobacterium Synechococcus elongatus PCC 7942.

2021 
In cyanobacteria, the PII protein (the glnB gene product) regulates a number of proteins involved in nitrogen assimilation including PipX, the co-activator of the global nitrogen regulator protein NtcA. In Synechococcus elongatus PCC 7942, construction of a PII-less mutant retaining the wild-type pipX gene is difficult because of the toxicity of uncontrolled action of PipX and the other defect(s) resulting from the loss of PII  per se, but the nature of the PipX toxicity and the PipX-independent defect(s) remains unclear. Characterization of a PipX-less glnB mutant (PD4) in this study showed that the loss of PII increases the sensitivity of PSII to ammonium. Ammonium was shown to stimulate formation of reactive oxygen species in the mutant cells. The ammonium-sensitive growth phenotype of PD4 was rescued by addition of an antioxidant α-tocopherol, confirming that photo-oxidative damage was the major cause of the growth defect. A targeted PII mutant retaining wild-type pipX was successfully constructed from the wild-type S. elongatus strain (SPc) in the presence of α-tocopherol. The resulting mutant (PD1X) showed an unusual chlorophyll fluorescence profile, indicating extremely slow reduction and re-oxidation of QA, which phenotype was not observed in the mutant defective in both glnB and pipX. These results showed that the aberrant action of uncontrolled PipX resulted in impairment of the electron transport reactions in both the reducing and oxidizing sides of QA.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    0
    Citations
    NaN
    KQI
    []