Pharmacokinetic-pharmacodynamic correlation from mouse to human with pazopanib, a multikinase angiogenesis inhibitor with potent antitumor and antiangiogenic activity

2007 
With the development of targeted therapeutics, especially for small-molecule inhibitors, it is important to understand whether the observed in vivo efficacy correlates with the modulation of desired/intended target in vivo . We have developed a small-molecule inhibitor of all three vascular endothelial growth factor (VEGF) receptors (VEGFR), platelet-derived growth factor receptor, and c-Kit tyrosine kinases, pazopanib (GW786034), which selectively inhibits VEGF-induced endothelial cell proliferation. It has good oral exposure and inhibits angiogenesis and tumor growth in mice. Because bolus administration of the compound results in large differences in C max and C trough, we investigated the effect of continuous infusion of a VEGFR inhibitor on tumor growth and angiogenesis. GW771806, which has similar enzyme and cellular profiles to GW786034, was used for these studies due to higher solubility requirements for infusion studies. Comparing the pharmacokinetics by two different routes of administration (bolus p.o. dosing and continuous infusion), we showed that the antitumor and antiangiogenic activity of VEGFR inhibitors is dependent on steady-state concentration of the compound above a threshold. The steady-state concentration required for these effects is consistent with the concentration required for the inhibition of VEGF-induced VEGFR2 phosphorylation in mouse lungs. Furthermore, the steady-state concentration of pazopanib determined from preclinical activity showed a strong correlation with the pharmacodynamic effects and antitumor activity in the phase I clinical trial. [Mol Cancer Ther 2007;6(7):2012–21]
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    420
    Citations
    NaN
    KQI
    []