Pattern formation in a coupled membrane-bulk reaction-diffusion model for intracellular polarization and oscillations

2019 
Reaction-diffusion systems have been widely to study spatio-temporal phenomena in cell biology, such as cell polarization. Coupled bulk-surface models naturally include compartmentalization of cytosolic and membrane-bound polarity molecules. Here we study the distribution of the polarity protein Cdc42 in a mass-conserved membrane-bulk model, and explore the effects of diffusion and spatial dimensionality on spatio-temporal pattern formation. We first analyze a one-dimensional (1-D) model for Cdc42 oscillations in fission yeast, consisting of two diffusion equations in the bulk domain coupled to nonlinear ODEs for binding kinetics at each end of the cell. In 1-D, our analysis reveals the existence of symmetric and asymmetric steady states, as well as anti-phase relaxation oscillations typical of slow-fast systems. We then extend our analysis to a two-dimensional (2-D) model, for which species can either diffuse inside the cell or become bound to the membrane and undergo a nonlinear reaction-diffusion process. We also consider a nonlocal system of PDEs approximating the dynamics of the 2-D membrane-bulk model in the limit of fast bulk diffusion. In all three model variants we find that mass conservation selects perturbations of spatial modes that simply redistribute mass. In 1-D, only anti-phase oscillations between the two ends of the cell can occur, and in-phase oscillations are excluded. In higher dimensions, no radially symmetric oscillations are observed. Instead, the only instabilities are symmetry-breaking, either corresponding to stationary Turing instabilities, leading to the formation of stationary patterns, or to oscillatory Turing instabilities, leading to traveling and standing waves. Codimension-two Bogdanov-Takens bifurcations occur when the two distinct instabilities coincide, causing traveling waves to slow down and to eventually become stationary patterns.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    8
    Citations
    NaN
    KQI
    []