Molecular mechanism of MYB111 and WRKY40 involved in anthocyanin biosynthesis in red-fleshed apple callus

2019 
The WRKY transcription factors play key roles in plant growth and abiotic stress responses; however, the molecular mechanisms behind their involvement in anthocyanin biosynthesis are still unclear. In our study, we identified a Leu zipper motif and a WRKY domain in MdWRKY40 protein. Phylogenetic tree analysis showed that MdWRKY40, AtWRKY18 and AtWRKY40 were on the same evolutionary branch and were Group IIa WRKY proteins. Yeast two-hybrid and bimolecular fluorescence complementation assays showed that MdWRKY40 could interact with itself to form homodimers. Overexpressing MdMYB111 in red-fleshed callus inhibited the expression of MdANS and decreased the anthocyanin content. EMSA assay showed that MdMYB111 and MdWRKY40 could bind the MRE and the W box, respectively, in the MdANS promoter. Overexpressing MdWRKY40 in red-fleshed callus did not affect the expression of MdANS or the anthocyanin content. However, overexpressing MdWRKY40 in callus overexpressing MdMYB111 weakened the inhibitory effect of MdMYB111 on anthocyanin biosynthesis. Knocking out the Leu zipper motif of MdWRKY40 (LLSMdWRKY40) prevented its self-interaction, and knocking out C-x5-C sequence of MdWRKY40 (LCSMdWRKY40) prevented it from binding to W box. It did not weaken the inhibitory effect of MdMYB111 on anthocyanin biosynthesis when overexpressing LCSMdWRKY40 or LLSMdWRKY40 in callus overexpressing MdMYB111. Thus, MdMYB111 and MdWRKY40 may play important roles in the anthocyanin biosynthetic pathway.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    0
    Citations
    NaN
    KQI
    []