Identifying potential evolutionary consequences of climate-driven phenological shifts

2012 
Climate change is shifting the phenology of many species throughout the world. While the interspecific consequences of these phenological shifts have been well documented, the intraspecific shifts and their resultant evolutionary consequences remain relatively unexplored. Here, we present a conceptual framework and overview of how phenological shifts within species can drive evolutionary change. We suggest that because the impacts of climate change are likely to vary across the range of a species and differentially impact individuals, phenological shifts may often be highly variable both within and among populations. Together these changes have the potential to alter existing patterns of gene flow and influence evolutionary trajectories by increasing phenological isolation and connectivity. Recent research examining the response of species to contemporary climate change suggests that both phenological isolation and connectivity may be likely responses to future climate change. However, recent studies also show mixed results on whether adaptive responses to climate change are likely to occur, as some populations have already shown adaptive responses to changing climate, while others have not despite fitness costs. While predicting the exact consequences of intraspecific phenological shifts may be difficult, identifying the evolutionary implications of these shifts will allow a better understanding of the effects of future climate change on species persistence and adaptation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    66
    References
    13
    Citations
    NaN
    KQI
    []