Potential Second-Harmonic Ghost Bands in Fourier Transform Infrared (FT-IR) Difference Spectroscopy of Proteins:

2018 
Fourier transform infrared (FT-IR) difference absorption spectroscopy is a common method for studying the structural and dynamical aspects behind protein function. In particular, the 2800–1800 cm−1 spectral range has been used to obtain information about internal (deuterated) water molecules, as well as site-specific details about cysteine residues and chemically modified and artificial amino acids. Here, we report on the presence of ghost bands in cryogenic light-induced FT-IR difference spectra of the protein bacteriorhodopsin. The presence of these ghost bands can be particularly problematic in the 2800–1900 cm−1 region, showing intensities similar to O–D vibrations from water molecules. We demonstrate that they arise from second harmonics from genuine chromophore bands located in the 1400–850 cm−1 region, generated by double-modulation artifacts caused from reflections of the IR beam at the sample and at the cryostat windows back to the interferometer (inter-reflections). The second-harmonic ghost ban...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    5
    Citations
    NaN
    KQI
    []