Minor change in the length of carbon chain has a great influence on the antitumor effect of paclitaxel-fatty alcohol prodrug nanoassemblies: Small roles, big impacts

2021 
Prodrug-based nanoassembly emerges as a hopeful way for the efficient delivery of antitumor drugs, with carrier-free structure and ultra-high drug loading. Carbon chains are widely used to design self-assembling prodrugs. The impacts of the length of carbon chains on the self-assembly stability, drug delivery efficiency and antitumor effect of prodrugs have not been fully elucidated. Here, three paclitaxel prodrugs were synthesized by conjugating paclitaxel with octanol (C8), decanol (C10) or dodecanol (C12) through disulfide bond. The three prodrugs could form homogeneous nanoparticles, with over 50% drug loading and redox dual-responsivity. Interestingly, the length extension of carbon chains ameliorates the self-assembly and the colloidal stability of prodrugs, thus improving the drug delivery efficiency. The optimal paclitaxel-dodecanol prodrug nanoassemblies exhibit better antitumor efficacy than Taxol and Abraxane. These findings are meaningful for the rational design of advanced nanomedicines in cancer therapy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    0
    Citations
    NaN
    KQI
    []