Adiabatic and nonadiabatic spin-transfer torques in antiferromagnets

2021 
Electron transport in magnetic orders and the magnetic order dynamics have a mutual dependence, which provides the key mechanisms in spin-dependent phenomena. Recently, antiferromagnetic orders have been focused on as the magnetic order, where current-induced spin-transfer torques, a typical effect of electron transport on the magnetic order, have been debatable, mainly because of the lack of an analytic derivation based on quantum field theory. Here, we construct the microscopic theory of spin-transfer torques on the slowly varying staggered magnetization in antiferromagnets with weak canting. In our theory, the electron is captured by bonding/antibonding states, each of which is the eigenstate of the system, is doubly degenerate, and spatially spreads to sublattices because of electron hopping. The spin of the eigenstates depends on the momentum in general, and a nontrivial spin-momentum locking arises for the case with no site inversion symmetry, without considering any spin-orbit couplings. The spin current of the eigenstates includes an anomalous component proportional to a kind of gauge field defined by derivatives in momentum space and induces the adiabatic spin-transfer torques on the magnetization. Unexpectedly, we find that one of the nonadiabatic torques has the same form as the adiabatic spin-transfer torque, while the obtained forms for the adiabatic and nonadiabatic spin-transfer torques agree with the phenomenological derivation based on the symmetry consideration. This finding suggests that the conventional explanation for the spin-transfer torques in antiferromagnets should be changed. Our microscopic theory provides a fundamental understanding of spin-related physics in antiferromagnets.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    0
    Citations
    NaN
    KQI
    []