Three-dimensional printing as a technology supporting the treatment of lower limb deformity and shortening with the Ilizarov method

2018 
Abstract Background Treatment of multiplanar deformities, especially in younger children, requires construction of a complex Ilizarov fixator, frequently with small dimensions. The aim of this study is to verify clinical application of a3D-printed bone model in treatment with the Ilizarov method. Methods The study involved a 6-year-old child in whom clinical and radiological examination revealed multiplanar deformity of the right leg. Then, 3D models of individual bones were printed by means of additive manufacturing and were used as a scaffold to install the Ilizarov apparatus. To compare the expected and factual axial correction and lengthening, we measured spatial orientation of bone fragments three times. The factual axial correction and lengthening were determined with a photometric technique. Results Ilizarov fixator with a configuration developed using a 3D model of the treated bone was mounted on the patient's leg. Corticotomy was carried out at the proximal metaphysis of the right tibia, along with osteotomy of the right talus. The treatment resulted in a 3.5-cm lengthening of the limb and a 7° correction of valgus angle. The values of actual lengthening and axial correction were 4.1% lower than the expected values of these parameters. Interpretation Orthopedists should consider differences between the expected and actual lengthening and axial correction in planning treatment with the Ilizarov method. Three-dimensional printing is a useful technology that can be used to support treatment with the Ilizarov method.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    1
    Citations
    NaN
    KQI
    []