Influence of eugenol on algal growth, cell physiology of cyanobacteria Microcystis aeruginosa and its interaction with signaling molecules.

2020 
Abstract Essential oils (EOs) are naturally occurring substances that have shown great prospect in the field of antimicrobial, antioxidant and pest control by nontoxic mechanisms. In this regard, EOs are considered the promising and eco-friendly approach for controlling harmful algae. In this study, the anti-cyanobacterial activity of EOs eugenol against Microcystis aeruginosa are evaluated from the perspective of photosynthetic efficiency, the behavior of extracellular organic matter (EOM), endogenous plant hormone synthesis, and nitric oxide signaling pathway. Results showed that the photosynthetic activity of M. aeruginosa decreased significantly after eugenol treatments. Eugenol treatment resulted in cells rupture and the release of EOM. Levels of endogenous plant hormones salicylic acid (SA) and jasmonic acid (JA) were enhanced separately by 2.32 and 2.01 times after 4 d of exposure to eugenol. And the inhibition of SA and JA biosynthesis further promotes the inhibitory effects of eugenol on algae. Additionally, the signaling molecule nitric oxide (NO) increased significantly by 3.78-fold. Furthermore, the influence of NO on microalgae exposed to eugenol was also determined, suggesting that the inhibitory effect of eugenol stress might be associated with NO generation in M. aeruginosa. These findings will be helpful for the understanding of the fate and potential of eugenol in harmful algae control.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    7
    Citations
    NaN
    KQI
    []