Quantitative and organisational changes in mature extracellular matrix revealed through high-content imaging of total protein fluorescently stained in situ

2017 
Fibrosis is a common driver of end-stage organ failure in most organs. It is characterised by excessive accumulation of extracellular matrix (ECM) proteins. Therapeutic options are limited and novel treatments are urgently required, however current cell-based high-throughput screening (HTS) models to identify molecules affecting ECM accumulation are limited in their relevance or throughput. We report a novel sensitive approach which combines in situ fluorescent staining of accumulated decellularised ECM proteins with automated high-content microscopy. Using this method to measure ECM accumulation in a kidney cell model, we demonstrated good agreement with established radiolabelled amino acid incorporation assays: TGFβ1 delivered a potent pro-fibrotic stimulus, which was reduced by TGFβ antibody or the anti-fibrotic nintedanib. Importantly, our method also provides information about matrix organisation: the extent of ECM accumulation was unaffected by the BMP antagonist Gremlin-1 but a pronounced effect on matrix fibrillar organisation was revealed. This rapid, straightforward endpoint provides quantitative data on ECM accumulation and offers a convenient cross-species readout that does not require antibodies. Our method facilitates discovery of novel pro- and anti-fibrotic agents in 384-well plate format and may be widely applied to in vitro cell-based models in which matrix protein deposition reflects the underlying biology or pathology.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    3
    Citations
    NaN
    KQI
    []