Information production in homogeneous isotropic turbulence

2019 
We study the Reynolds number scaling of the Kolmogorov-Sinai entropy and attractor dimension for three dimensional homogeneous isotropic turbulence through the use of direct numerical simulation. To do so, we obtain Lyapunov spectra for a range of different Reynolds numbers by following the divergence of a large number of orthogonal fluid trajectories. We find that the attractor dimension grows with the Reynolds number as Re$^{2.35}$ with this exponent being larger than predicted by either dimensional arguments or intermittency models. The distribution of Lyapunov exponents is found to be finite around $\lambda \approx 0$ contrary to a possible divergence suggested by Ruelle. The relevance of the Kolmogorov-Sinai entropy and Lyapunov spectra in comparing complex physical systems is discussed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    5
    Citations
    NaN
    KQI
    []