The Impact of Shocks on the Vertical Structure of Eccentric Disks

2021 
Accretion disks whose matter follows eccentric orbits can arise in multiple astrophysical situations. Unlike circular orbit disks, the vertical gravity in eccentric disks varies around the orbit. In this paper, we investigate some of the dynamical effects of this varying gravity on the vertical structure using $1D$ hydrodynamics simulations of individual gas columns assumed to be mutually non-interacting. We find that time-dependent gravitational pumping generically creates shocks near pericenter; the energy dissipated in the shocks is taken from the orbital energy. Because the kinetic energy per unit mass in vertical motion near pericenter can be large compared to the net orbital energy, the shocked gas can be heated to nearly the virial temperature, and some of it becomes unbound. These shocks affect larger fractions of the disk mass for larger eccentricity and/or disk aspect ratio. In favorable cases (such as the tidal disruption of stars by supermassive black holes), these effects could be a potentially important energy dissipation and mass loss mechanism.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    0
    Citations
    NaN
    KQI
    []