Serial recall of colors: Two models of memory for serial order applied to continuous visual stimuli

2018 
This study investigated the effects of serial position and temporal distinctiveness on serial recall of simple visual stimuli. Participants observed lists of five colors presented at varying, unpredictably ordered interitem intervals, and their task was to reproduce the colors in their order of presentation by selecting colors on a continuous-response scale. To control for the possibility of verbal labeling, articulatory suppression was required in one of two experimental sessions. The predictions were derived through simulation from two computational models of serial recall: SIMPLE represents the class of temporal-distinctiveness models, whereas SOB-CS represents event-based models. According to temporal-distinctiveness models, items that are temporally isolated within a list are recalled more accurately than items that are temporally crowded. In contrast, event-based models assume that the time intervals between items do not affect recall performance per se, although free time following an item can improve memory for that item because of extended time for the encoding. The experimental and the simulated data were fit to an interference measurement model to measure the tendency to confuse items with other items nearby on the list—the locality constraint—in people as well as in the models. The continuous-reproduction performance showed a pronounced primacy effect with no recency, as well as some evidence for transpositions obeying the locality constraint. Though not entirely conclusive, this evidence favors event-based models over a role for temporal distinctiveness. There was also a strong detrimental effect of articulatory suppression, suggesting that verbal codes can be used to support serial-order memory of simple visual stimuli.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    11
    Citations
    NaN
    KQI
    []