Role of algal accumulations on the partitioning between N2 production and dissimilatory nitrate reduction to ammonium in eutrophic lakes

2020 
Abstract Cyanobacterial blooms change benthic nitrogen (N) cycling in eutrophic lake ecosystems by affecting organic carbon (OC) delivery and changing in nutrients availability. Denitrification, anaerobic ammonium oxidation (anammox), and dissimilatory nitrate reduction to ammonium (DNRA) are critical dissimilatory nitrate reduction pathways that determine N removal and N recycling in aquatic environments. A mechanistic understanding of the influence of algal accumulations on partitioning among these pathways is currently lacking. In the present study, a manipulative experiment in aquarium tanks was conducted to determine the response of dissimilatory nitrate reduction pathways to changes in algal biomass, and the interactive effects of OC and nitrate. Potential dinitrogen (N2) production and DNRA rates, and related functional gene abundances were determined during incubation of 3–4 weeks. The results indicated that high algal biomass promoted DNRA but not N2 production. The concentrations of dissolved organic carbon were the primary factor affecting DNRA rates. Low nitrate availability limited N2 production rates in treatments with algal pellets and without nitrate addition. Meanwhile, the AOAamoA gene abundance was significantly correlated with the nrfA and nirS gene abundances, suggesting that coupled nitrification-denitrification/DNRA was prevalent. Partitioning between N2 production and DNRA was positively correlated with the ratios of dissolved organic carbon to nitrate. Correspondingly, in Lake Taihu during summer to fall, the relatively high organic carbon/nitrate might favorably facilitate DNRA over denitrification, subsequently sustaining cyanobacterial blooms.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    15
    Citations
    NaN
    KQI
    []