Journal Bearing Lubrication of Power Law Fluid with Consistency Variation Including Convection

2018 
An effort is made to discuss the vital effects of temperature on hydrodynamic lubrication of journal bearing by non-Newtonian power law lubricants. Boundary surfaces are assumed to be rigid and isothermal. It is assumed that the consistency of the lubricant varies with film temperature and pressure, as considered by some researchers. The employed equations of motion and the continuity are solved numerically and analytically. For the numerical solution, Runge–Kutta–Fehlberg method is employed with adequate tolerance. The effects of temperature and pressure are analyzed through various table and graphs as functions of the consistency index of the lubricant velocity and journal velocity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    1
    Citations
    NaN
    KQI
    []