Contribution of DNA Repair Xeroderma Pigmentosum Group D Genotype to Gastric Cancer Risk in Taiwan

2015 
It has been proposed that genetic variations of DNA repair genes confer susceptibility to cancer, and the DNA repair gene xeroderma pigmentosum group D (XPD), the caretaker of genome stability, is thought to play a major role in the nucleotide excision repair system. We investigated three genotypes of XPD, at promoter -114 (rs3810366), and codon 312 (rs1799793), 751 (rs13181), and their associated with gastric cancer susceptibility in a Taiwanese population.In the present study, 121 patients with gastric cancer and 363 gender- and age-matched healthy controls were recruited and genotyped for XPD by polymerase chain reaction-based restriction fragment length polymorphism (PCR-RFLP) methodology, and the association of XPD genotype with gastric cancer risk was investigated.We found a significant difference in the distribution of A allele-bearing XPD codon 312 genotypes [odds ratio (OR)=1.64, 95% confidence interval (CI)=1.20-2.25, p=0.0019], but not in XPD codon 751 or promoter -114 sites, between the gastric cancer and control groups. Those who had G/A or A/A at XPD codon 312 had a 1.83-fold (95% CI=1.14-2.95, p=0.0159) and 1.87-fold (95% CI=1.04-3.34, p=0.0378) increased risk of gastric cancer compared to those with G/G. The risk for G/A and A/A genotypes had synergistic effects with alcohol drinking (OR=11.27, 95% CI=3.72-34.17, p=0.0001), cigarette smoking (OR=23.20, 95% CI=6.24-86.23, p=0.0001) and Helicobacter pylori infection (OR=5.38, 95% CI=2.76-10.52, p=0.0001) on gastric cancer susceptibility.Our findings suggest that the A allele of XPD codon 312 may contribute to gastric carcinogenesis and may be useful for early detection and prevention of gastric cancer.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    12
    Citations
    NaN
    KQI
    []