Towards efficient and automated side-channel evaluations at design time

2020 
Models and tools developed by the semiconductor community have matured over decades of use. As a result, hardware simulations can yield highly accurate and easily automated pre-silicon estimates for, e.g., timing and area figures. In this work, we design, implement, and evaluate CASCADE, a framework that combines a largely automated full-stack standard cell design flow with the state-of-the-art techniques for side-channel analysis. We show how it can be used to efficiently evaluate side-channel leakage prior to chip manufacturing. Moreover, it is independent of the underlying countermeasure and it can be applied starting from the earliest stages of the design flow. Additionally, we provide experimental validation through assessment of the side-channel security of representative cryptographic circuits. We discuss aspects related to the performance, scalability, and utility to the designers. In particular, we show that CASCADE can evaluate information leakage with 1 million simulated traces in less than 4 h using a single desktop workstation, for a design larger than 100 kGE.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    8
    Citations
    NaN
    KQI
    []