Low-energy ion-implantation-induced quantum-well intermixing

2002 
In this paper, we present the attractive characteristics of low-energy ion-implantation-induced quantum-well intermixing of InP-based heterostructures. We demonstrate that this method can fulfil a list of requirements related to the fabrication of complex optoelectronic devices with a spatial control of the bandgap profile. First, we have fabricated high-quality discrete blueshifted laser diodes to verify the capability of low-energy ion implantation for the controlled modification of bandgap profiles in the absence of thermal shift. Based on this result, intracavity electroabsorption modulators monolithically integrated with laser devices were fabricated, for the first time, using this postgrowth technique. We have also fabricated monolithic six-channel multiple-wavelength laser diode chips using a novel one-step ion implantation masking process. Finally, we also present the results obtained with very low-energy (below 20 keV) ion implantation for the development of one-dimensional and zero-dimensional quantum confined structures.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    74
    Citations
    NaN
    KQI
    []