New structure of silica-based planar lightwave circuits for low-power thermooptic switch and its application to 8 /spl times/ 8 optical matrix switch

2002 
We propose a novel structure that reduces the switching power of a silica-based thermooptic switch (TOSW). The structure consists of silicon trenches and heat insulating grooves, which are formed beneath and beside the arms of a Mach-Zehnder interferometer, respectively. We optimize the structure using the differential-element method (DEM) and fabricate a 2 /spl times/ 2 TOSW with a switching power of only 90 mW, namely, 75% less than that of a conventional TOSW. We also obtain an insertion loss of about 1 dB and an extinction ratio of over 30 dB with a response time from 0% to 90% of 4.9 ms. We then use the structure to fabricate an 8 /spl times/ 8 matrix switch and confirm a total power consumption of 1.4 W with an average insertion loss of 7.4 dB and an extinction ratio of 50.4 dB for 64 possible optical paths.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    55
    Citations
    NaN
    KQI
    []