Assessing hydrodynamic effects of ecological restoration scenarios for a tidal-dominated wetland in Liaodong Bay (China)

2021 
Abstract Estuarine wetlands have experienced a variety of ecological and environmental problems caused by natural and anthropogenic factors. China has proposed a series of measures and made great efforts to control coastal degradation; however, decision makers still urgently need to know which measures to implement and how they will influence the estuarine environment and functions. This study used field observations, a hydrodynamic model, and statistical methods to investigate the effects of potential restoration scenarios on hydrodynamic conditions in the tidal-influenced estuarine wetland system, Liaodong Bay (China). Results reveal that the average total phosphorus, organic carbon, available phosphorus, pH, total nitrogen content, and moisture content in the soil and sediment environment were 0.04 ± 0.003%, 0.84 ± 0.25%, 16.3 ± 4.7 mg/kg, 8.3 ± 0.1, 0.07 ± 0.02%, and 44 ± 2%, respectively, exhibiting an overall trend of degradation. A series of restoration scenarios in regards to hydrodynamic regulation and tidal inputs were used to preserve the ecological value of the estuarine wetland. Model simulations indicate that the significant improvement of hydrodynamic fields (inundation depth and flow velocity) is more likely to occur when the tidal amplitudes reach around 2 m, while relatively weak responses can be observed when the tidal levels are lower than 1 m. Additionally, the construction of floodgates may play a key role in determining the tidal inputs and flowpaths across the wetland. The modifications in micro-topography of the wetland may play a complementary role in enhancing the connectivity condition via increased creek depth of 0.5 m and width up to around 20 m. This work represents a first attempt in exploring hydrodynamic effects of restoration scenarios for a tidal-dominated wetland. An improved understanding of the estuarine system also highlights that the design and implementation of wetland restoration projects should use more comprehensive measures to achieve long-term landscape management, connectivity planning, and ecological sustainability.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    5
    Citations
    NaN
    KQI
    []