A Ratiometric Fluorescent Biosensor Reveals Dynamic Regulation of Long-Chain Fatty Acyl-CoA Esters Metabolism.

2021 
Despite increasing awareness of the biological impacts of long-chain fatty acyl-CoA esters (LCACoAs), our knowledge about the subcellular distribution and regulatory functions of these acyl-CoA molecules is limited by a lack of methods for detecting LCACoAs in living cells. Here, we report development of a genetically encoded fluorescent sensor that enables ratiometric quantification of LCACoAs in living cells and subcellular compartments. We demonstrate how this FadR-cpYFP fusion "LACSer sensor" undergoes LCACoA-induced conformational changes reflected in easily detectable fluorescence responses, and show proof-of-concept for real-time monitoring of LCACoAs in human cells. Subsequently, we applied LACSer to investigate how disruption of ACSL enzymes differentially reduces cytosolic and mitochondrial LCACoA levels, and show how genetic disruption of an acyl-CoA binding protein (ACBP) alters mitochondrial accumulation of LCACoAs. Thus, our LACSer sensor achieves spatiotemporally precise detection of dynamic changes in endogenous LCACoA levels in living cells and yields mechanistic insights about metabolism and cellular regulation .
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    0
    Citations
    NaN
    KQI
    []